Tag Archive for: molecules

Structural Changes in Chocolate Blooming

Is there anything more disappointing than finding a chocolate bar in the back of the desk drawer, anticipating a tasty treat, then unwrapping the bar only to find a dull, grey haze has overtaken your dear candy? Seeing as bloomed chocolate is still edible, yes, there are many things more disappointing than that. But surely you’re curious about how chocolate that was once shiny and perfect came to be filmy and rough. Chocolate blooming, the process that produces the white-grey film that appears on the surface of an old chocolate, is due to molecular migration. More specifically, this imperfection is caused by the movement of fats to the surface of the chocolate followed by a subsequent recrystallization. In a paper published by Applied Materials & Interfaces, a team of researchers dedicated to keeping our chocolates blemish-free has clarified the precise mechanisms that cause chocolate blooming.

The main fat in chocolate is cocoa butter, which is solid at room temperature and melts at 37 degrees Celsius. The proportion of solid to liquid cocoa butter depends on the lipid composition, which depends on which specific triglycerides are present. The solid to liquid proportion also varies with the storage conditions of the chocolate.

As proposed by Aguilera et al, scientists who study this chocolate blooming, consider chocolate as a particulate medium of fat-coated particles such as cocoa solids, sucrose, and milk powder, all suspended in a fat phase with the aid of an emulsifier, which helps to mix fats and oils with water, which usually repel each other. There are six crystallographic polymorphs of cocoa butter molecules, that is, there are six ways the molecules can organize themselves. The structural stability of these polymorphs increases from 1- 6; form 1 is the best at forming solid butter at room temperature, while form 6 tends to arrange in the loose bonds of a liquid. Form 5 is the main form in chocolate, as it possesses the most aesthetically desirable properties. While the phenomenon of blooming is well known to result from melting and recrystallization of chocolate into a less desirable polymorph, it has been unclear how fat moves through the chocolate particle network: Does it move along the fat-particle interface? Does it diffuse through the fat phase (cocoa butter), or through the matrix of assorted particles?

Possible lipid migration pathways in chocolate - Reinke et al

Possible lipid migration pathways in chocolate – Reinke et al

In this experiment, researchers used synchrotron microfocus small-angle X-ray scattering to determine the preferential migration pathway of the cocoa butter molecules surrounded by three different soild components (cocoa solids, skim milk, and sucrose). This technique allows researchers to record the scattering of x-rays through a sample with defects in the nanometer range. They can then extrapolate information about the material’s macromolecules, their shapes and sizes up to 125 nanometers, and distances between partially ordered materials, such as pore sizes. For this experiment, this method is better than more traditional macroscopic techniques as the sample does not need to be dissected in order to examine it, therefore the same sample can be continually analyzed.

Sketch of the experimental setup - Reink et al

Sketch of the experimental setup – Reink et al

The researchers prepared and tempered four different chocolate samples. An initial scattering of x-rays and data collection was performed before the addition of sunflower oil, then 10 uL of oil was pipetted onto the chocolate surface, and a second scan was performed. Images of the droplet were captured through a high-speed camera. These scans were repeated at 5, 10, and 30 minutes after oil addition, and again after 1, 2, 5, and 24 hours.

The results obtained suggest that oil is migrating through pores and cracks in the solid structure driven by capillarity within seconds. This means that the oil can flow in narrow spaces in opposition to gravity. Then chemical migration through the fat phase occurs. The oil doesn’t traverse the fat-particle interface, nor does it move through the matrix of solid particles. This migration disrupts the crystalline cocoa butter, which induces softening.

Because the most immediate migration of oils occurs through the material porous structure, the formation of chocolate bloom could be prevented by minimizing pores and defects in the chocolate matrix. To prevent the longer-term effects of chemical migration of lipids, one must minimize the content of non-crystallized liquid cocoa butter. Tempering chocolate lends to crystalline structures that resist migration, as will reducing the liquid fat content. However, to ensure that you never encounter a sad hazy chocolate again, we recommend eating all chocolate goods expeditiously.

Works Cited

  1. Tracking Structural Changes in Lipid-based Multicomponent Food Materials due to Oil Migration by Microfocus Small-Angle X-ray Scattering. Svenja K. Reinke, Stephan V. Roth, Gonzalo Santoro, Josélio Vieira, Stefan Heinrich, and Stefan Palzer. ACS Applied Materials & Interfaces 2015 7 (18), 9929-9936. DOI:10.1021/acsami.5b02092
  2. Aguilera, J. M.; Michel, M.; Mayor, G.Fat Migration in Chocolate: Diffusion or Capillary Flow in a Particulate Solid?—A Hypothesis PaperJ. Food Sci. 2004, 69, 167–174

 


Elsbeth SitesAbout the author: Elsbeth Sites received her B.S. in Biology at UCLA. Her addiction to the Food Network has developed into a love of learning about the science behind food.

Read more by Elsbeth Sites


Caffeine vs. Chocolate: A Mighty Methyl Group

Guest post by Christina Jayson

Photo credit: Lisa Townley (left); Pyogenes Gruffer (right), Flickr.

Photo credit: Lisa Townley (left); Pyogenes Gruffer (right), Flickr.

When my organic chemistry professor told me that the main molecular component of chocolate, theobromine, differs from caffeine only by the absence of one methyl group I was delighted: I could skip an entire step in caffeine metabolism, avoid the bitter taste of coffee, and increase my chocolate consumption. It seemed to make sense that as the caffeine I drank was metabolized by removing the methyl group, caffeine would convert to theobromine (the main compound of chocolate) (Figure 1). At the molecular level, a methyl group is a carbon with three hydrogens attached. It may seem simple, but a methyl group is an integral part of chemistry, biology, and biochemistry. For example, additional methyl groups can help a molecule to cross the blood-brain barrier and enter our brain – this barrier protects our brain from foreign molecules traveling in the blood that can be harmful [1, 2]. In the case of caffeine, it turns out that the extra methyl group on the molecule is what makes coffee active on our central nervous systems and an “energy stimulator,” while chocolate functions as a sweet treat and smooth muscle stimulator.

Figure 1: During the metabolism of caffeine in the body, the methyl group (highlighted by the yellow box) is removed from caffeine and it is converted to theobromine (Modified from Wolf LK, 2013) [9].

Figure 1: During the metabolism of caffeine in the body, the methyl group (highlighted by the yellow box) is removed from caffeine and it is converted to theobromine (Modified from Wolf LK, 2013) [9].

So how do these two molecules act on different parts of the body, making coffee the substance of choice over chocolate bars when midterm season hits?

Caffeine is mostly derived from Coffea Arabica, or coffee beans, and seeds [3]. It is predominantly a central nervous stimulant, though it also stimulates cardiac and skeletal muscles and relaxes smooth muscles. Chocolate, or theobromine, is found in products of Theobroma cacao, or cocoa plant seeds (Figure 2). Much like caffeine, theobromine is a diuretic; however it mainly acts as a smooth muscle relaxant and cardiac stimulant [3]. While these two compounds have similar effects, the key difference is that caffeine has an effect on the central nervous system and theobromine most significantly affects smooth muscle [4]. In behavioral studies, caffeine intake improves self-reported alertness and mood over a period of 24 hours [5]. Theobromine produces mild positive effects in pleasure, but does not affect attention or alertness in moderate doses compared to caffeine [6].

Figure 2: Chocolate (left) is made from Theobroma cacao, or cacao plant seeds and contains theobromine (PC: Nic Charalambous). Coffee (right) is made from Coffea Arabica, or coffee beans, and seeds and contains caffeine (Photo credit: JIhopgood/Flickr).

Figure 2: Chocolate (left) is made from Theobroma cacao, or cacao plant seeds and contains theobromine (PC: Nic Charalambous). Coffee (right) is made from Coffea Arabica, or coffee beans, and seeds and contains caffeine (Photo credit: JIhopgood/Flickr).

But the true difference in the compounds lies at the molecular level. Both caffeine and theobromine belong to the methylxanthine chemical family. These chemicals act as stimulants of the nervous system, most notably by binding to adenosine receptors in the brain and thereby blocking adenosine from binding to the receptors [7]. Adenosine binding to adenosine receptors normally reduces neural activity, so the antagonistic action of caffeine and theobromine prevents this activity reduction (Figure 3). The increased energy and alertness that we connect to massive coffee consumption is due to the caffeine preventing your body from responding to signals that tell it to slow down or de-stimulate. Ever felt your hands jitter uncontrollably after too many shots of espresso?

Figure 3: Caffeine molecules (C) compete with adenosine molecules (A) to bind to the adenosine receptors in the brain (Schardt, 2012) [10].

Figure 3: Caffeine molecules (C) compete with adenosine molecules (A) to bind to the adenosine receptors in the brain (Schardt, 2012) [10].

Experiments show the activity of caffeine on the nervous system is stronger than theobromine [7]. Caffeine and theobromine compete with adenosine to bind to the same adenosine receptor. Studies have shown that caffeine molecules are better able to compete with adenosine to bind adenosine receptors than theobromine – caffeine binds these receptors with two to three times higher affinity than theobromine [8].

To gain access to the different locations of the adenosine receptors throughout the body, the extra methyl group on caffeine ends up coming in handy. Because caffeine has three methyl groups instead of two like theobromine, it more easily crosses the blood-brain barrier. In crossing the blood-brain barrier, caffeine can act on the central nervous system. So while theobromine can act as a heart stimulant and smooth muscle relaxant, caffeine – boasting its extra methyl group – has access to the neurons of the central nervous system and can consequently enhance physical performance and increase alertness.

Photo credit: Chris Swift, Rogers Family Co [11]

Photo credit: Chris Swift, Rogers Family Co [11]

This means my master plan to forego coffee for chocolate won’t actually improve my alertness and energy to the same extent. However, indulging in chocolate flavored coffee may provide me with all the caffeine derivatives I need for a stimulating day.

References cited

  1. Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, and Spencer JPE. The neuroprotective potential of flavonoids:a multiplicity of effects. Genes Nutr. 2008 3(3-4): 115–126.
  2. Svenningsson P, Nomikos GG, Fredholm BB. The stimulatory action and the development of tolerance to caffeine is associated with alterations in gene expression in specific brain regions. J Neurosci 1999. 19(10):4011–4022.
  3. Barile FA. Clinical toxicology: Principles and mechanisms. 2nd ed. Informa Healthcare Press. 2010. Ch 15, Sypathomimetics. 174-177.
  4. Coleman W. Chocolate: Theobromine and Caffeine. J Chem Educ. 2004. 81(8): 1232
  5. Ruxton C. The impact of caffeine on mood, cognitive function, performance and hydration: a review of benefits and risks. Nutr Bull 2008. 33:15–25.
  6. Baggot MJ, Childs E, Hart AB, de Bruin E, Palmer AA, Wilkinson JE, de Wit, H. Psychopharmacology of theobromine in healthy volunteers. Psychopharma. 2013. 228(1): 109-118.
  7. Kuribara H, Asahi T, Tadokoro S. Behavioral evaluation of psycho-pharmacological and psychotoxic actions of methylxanthines by ambulatory activity and discrete avoidance in mice. J Toxicol Sci. 1992;17:81-90.
  8. Daly JW, Butts-Lamb P, and Padgett W. Subclasses of adenosine receptors in the central nervous system: Interaction with caffeine and related methylxanthines. Cell Mol Neurobiol. 1983. 1: 69-80.
  9. Wolf LK. Caffeine Jitters. Chem & Eng News. 2013. 91(5): 9-12.
  10. Schardt, D. Caffeine! Nutrition Action Healthletter. 2012.
  11. Swift, C. (2014, June 2). Which is better for your brain? Beer or Coffee? You’ll never guess. [Web log post].

Christina Jayson is a recent UCLA Biochemistry graduate and currently a Ph.D. student in the Biological and Biomedical Sciences program at Harvard.

Freezer Burnt Meat

Photo credit: flickr/Steven Depolo

Photo credit: flickr/Steven Depolo

Freezing is an indispensable tool in modern cooking and eating. The biochemical processes that typically occur in meats cause decay, fat oxidation, and rancidity; the higher the temperature, the faster these reactions occur. Thus, we can largely thwart off these undesirable processes by keeping meat chilled. But tossing meat into the freezer rarely results in rainbows, sunshine, or perfect burger patties, because strangely enough we can also accelerate meat decay with cold. Freezer burn can take a beautiful filet mignon and turn its surface into a leathered, unappetizing slab.

Freezer burn is caused by water sublimation from ice crystals at the meat’s surface into the dry freezer air. Sublimation occurs when a solid substance undergoes a phase change and becomes a vapor without first passing through the liquid phase. The ice crystals on the meat surface sublimate, and leave behind tiny cavities. These tiny yet numerous cavities increase the surface area of the meat and expose more tissue to the air. This accelerates oxidation of fats, which causes the rancid flavors of old spoiled meat. We usually describe oxidized fats as simply tasting “off,” which is a vague term but seems apt if you’ve ever tasted lipids past their prime, perhaps by using shortening that has been in the pantry since you were a toddler.

Photo Credit: flickr/Marcus Ward

Here, solid ice crystals directly vaporize without first passing through the liquid phase. Photo Credit: flickr/Marcus Ward

In addition to the surface area increase caused by sublimation, the freezing process itself lends itself to fat oxidation. When the liquid water in meats crystallize in the cold, the concentrations of oxidizing salts and trace metals in the tissues increases. Unfortunately, oxidation can occur over time even in wrapped and frozen meats. Some oxygen will inevitably remain in contact with the meat, unless we create a vacuum seal.

Once meat has been damaged by the cold, there’s no undoing the oxidation. So either we plan our meals so that meats are cooked immediately after purchase, or we learn to prevent the sublimation that ruins both our pork chops and our days. We simply need to keep water crystals inside the meat and keep oxygen out. Using a vacuum sealer is our best bet for avoiding freezer burn, but for cheapskates like me who won’t shell out the $30 for the sealing device, a water-impermeable plastic wrapped tightly around the meat works well enough for most home chefs.

Thus meat is sealed away happily in plastic, free from villainous oxygen. Photo credits: flickr/Mike

Thus meat is sealed away happily in plastic, free from villainous oxygen. Photo credits: flickr/Mike

References cited

  1. McGee, Harold. “Meats.” McGee on Food & Cooking: An Encyclopedia of Kitchen Science, History and Culture. London: Hodder & Stoughton, 2004. N. pag. Print.
  2. “Sublimation.” The Columbia Electronic Encyclopedia. Columbia University Press, 2012. Web. 20 July 2015.

 


Elsbeth SitesAbout the author: Elsbeth Sites received her B.S. in Biology at UCLA. Her addiction to the Food Network has developed into a love of learning about the science behind food.

Read more by Elsbeth Sites


Cotton Candy

Summer would be incomplete without carnivals and bright, fleecy, sugary cotton candy. For a snack that’s nothing but sugar and air, there’s a surprising amount of physics and chemistry involved. Below are seven science-heavy facts about this feathery-light confection.

Fotm, cotton candy slide 1


Fotm, cotton candy slide 2


Fotm, cotton candy slide 3


Fotm, cotton candy slide 4


Fotm, cotton candy slide 5


Fotm, cotton candy slide 6


Fotm, cotton candy slide 7


Editor’s note: The original post stated that 1 ounce of cotton candy is 0.105 kilocalories, when in fact, it is 105 kilocalories, which is equivalent to 105 Calories. Thanks to our astute reader, Allison of the Internet for catching that! The post has now been updated (08-18-2015 10:06 p.m. PST)


Alice PhungAbout the author: Alice Phung once had her sights set on an English degree, but eventually switched over to chemistry and hasn’t looked back since.

Read more by Alice Phung


Pistachio

They’re green, nutty, and floral, the perfect summer combination. Pistachios are used in many summertime favorites around the world, from can’t-get-enough-of-‘em Turkish delights to the Indian Subcontinent ice cream kulfi to the Italian frozen dessert spumone. They’re even perfect for cracking open for snacking while watching the ballgame. If pistachios aren’t the quintessential summer flavor, here are seven reasons why they should be: Read more

Beer

Celebrating St. Patrick’s Day with a frosty glass of beer? Before taking that first sip, consider these quick facts about the science behind the many complexities in beer flavors. Now that’s something to raise your glass to! Read more

Beer Yeast & Flavor

istock_000021851099large

Want beer foam that doesn’t dissipate right away? Microbiologist Tom Villa made a genetic discovery in yeast that could create beers with longer-lasting beer foam. This yeast, however, doesn’t quite affect the taste, so find out where beer flavor comes from.
Read more

Lavender

Lavender Cream

Lemon curd pudding lavender cream
Photo credit: Sue O’ Bryan (Foodlander/Flickr)

How does sipping a cup of lavender tea with honey sound? Soothing? Fragrant? Then imagine stumbling upon an open field of lavender flowers. The lavender plant, genus Lavandula, comprises 39 flowering plant species, all of which are easily recognized by that trademark color and signature fragrance. The most popular species of lavender is L. angustifolia, commonly known as English lavender and lauded for having the sweetest fragrance among lavender plants. Lavender flowers are primarily grown in order to extract the essential oil for both medical and culinary uses.

The distinctive purple flower is popular for its calming abilities, extensively used in aromatherapy alongside other herbs. Lavender is additionally famed for its healing properties. French chemist, René-Maurice Gattefossé realized the usefulness of lavender oil as a healing essence when he plunged his burned arm into a tub of liquid containing lavender oil, later noting quick tissue regeneration with little scarring [1,2]. Following Gattefossé’s observation and subsequent experiments using lavender oil in military hospitals during World War I, lavender is also used today as an antiseptic and anti-inflammatory [1]. As an herb, lavender of course has a dedicated fan base in the culinary world; the fragrant flower is the star of recipes such as lavender cake, lavender shortbread, and even lavender and honey roasted chicken.

Analysis of lavender oil reveals the primary compounds responsible for the scent are linalyl acetate and linalool (pronounced lin-ah-low-awl). Both have been cited to contain various pharmacological properties that aid in relaxation, such as anti-anxiety, anti-depressant, [1] and relaxant of vascular smooth muscles [3].

Minor volatile components that contribute to the scent of lavender essential oil include (E)-β-ocimene, (Z)-β-ocimene, terpinen-4-ol, 1,8-cineole, camphor, and limonene.

Minor compounds

But make no mistake. There’s nothing “minor” about these compounds when it comes to lavender flavor. According to the flavor network by physicist Albert-László Barabási, North American and Western European cuisines like to pair ingredients that share many flavor compounds. Camphor confers a woody, evergreen scent and is one of the primary volatile compounds in dried rosemary leaves; this makes lavender and rosemary a comforting combination. Further, linalyl acetate, linalool, and many of the minor volatile components of lavender oil can also be found in lemon peels and lemon essential oil [4]. Lavender and lemon are such celebrated culinary companions that the two are practically best friends.

Want to try cooking with lavender for the first time? Relax; it’s not as challenging as it seems. Just take a deep breath and try out this simple lavender sugar recipe.

References cited

    1. Tankeu SY, Vermaak I, Kamatou GPP, Viljoen AM. Vibrational spectroscopy and chemometric modeling: An economical and robust quality control method for lavender oil. Industrial Crops and Products, 2014; 59: 234-240.
    2. René-Maurice Gattefossé. Oils and Plants. Accessed 2014, December 21.
    3. Koto R, Imamura M, Watanabe C, Obayashi S, Shiraishi M, Sasaki Y, Azuma H. Linalyl acetate as a major ingredient of lavender essential oil relaxes the rabbit vascular smooth muscle through dephosphorylation of myosin light chain. Journal of Cardiovascular Pharmacology, 2006; 48(1): 850-856.
    4. Oboh G, Olasehinde TA, Ademosun AO. Essential oil from lemon peels inhibit key enzymes linked to neurodegenerative conditions and pro-oxidant induced lipid peroxidation. Journal of Oleo Science, 2014; 63(4): 373-381.

Alice PhungAbout the author: Alice Phung once had her sights set on an English degree, but eventually switched over to chemistry and hasn’t looked back since.

Read more by Alice Phung


Caramel

Caramel flavor is a major component of desserts and candies, ranging from smooth, thick sauces to crispy, dark brown glazes of crème brûlées. Through caramelization, a browning process where sugar is heated to around 170 °C and broken down, over 100 compounds are formed that contribute to the color, flavors, and textures of what we know as caramel [1].

Photo credit: APN MJM/Wikimedia Commons

Photo credit: APN MJM/Wikimedia Commons

One simple way to caramelize table sugar is by heating: this process removes water from the disaccharide sucrose (a substance composed of two simple sugars) and breaks it down into monosaccharides fructose and glucose. Next, the monosaccharides react with each other to form new compounds, such as caramelan, caramelen, and caramelin [2]. These compounds aggregate to form brown particles of various sizes due to additional water elimination, contributing to the characteristic brown color of caramel. The stickiness of caramel can be attributed to the ring form of these molecules combined with the presence of free radicals [3]. Further, when in the presence of alkali, sulphite, or ammonia, these compounds can also result in colorants used in food products such as soy sauce and Coca-Cola [4].

In addition to these classic caramel compounds, many other molecules are produced that result in different aromas that contribute to caramel’s complex flavor profile, such as furans (nutty), diacetyl (buttery), maltol (toasty), and ethyl acetate (fruity) [3].

How to tune the flavor of your caramel? The temperature the sugar is heated to determines caramel flavor. “Light caramel” (180°C) can be used for glazes, is rich in flavor, and pale amber to golden-brown in color. By contrast, “dark caramel” (188-204°C) is dark and bitter in flavor due to increased oxidation of the sucrose molecules; it is usually used for coloring. Additional heating past this point will turn the caramel into a black and bitter mess, as the sugar breaks down into pure carbon [2].

Interestingly, caramel candies made with milk or butter do not undergo the caramelization process. Instead, the heating of the dairy product in the recipe causes Maillard reactions between sugar and amines that result in the brown color and flavors produced [1].

Next time you enjoy caramel flavor, you can revel in the smell and taste of all the aromas that result from complex chemical processes. Or, simply make your own with sugar, water, and a stove.

References Cited

  1. Caramelization.” Accessed 21 October 2014.
  2. Caramelization.” Accessed 21 October 2014.
  3. The Chemistry of Caramel.” ScienceGeist. Accessed 21 October 2014.
  4. E150 Caramel.” Accessed 21 October 2014.

Catherine HuAbout the author: Catherine Hu is pursuing her B.S. in Psychobiology at UCLA. When she is not writing about food science, she enjoys exploring the city and can often be found enduring long wait times to try new mouthwatering dishes.

Read more by Catherine Hu


Ginger

Photo Credit: Jim Lightfoot (112095551@N02/Flickr)

Photo Credit: Jim Lightfoot (112095551@N02/Flickr)

One rhizome, many tastes. Ginger can be charmingly sweet as candied ginger, gingerbread, and ginger ale. Just as easily, this root can be spiritedly pungent, as in gari (sushi ginger) or unsweetened ginger tea. From sugary snacks to savory dishes, ginger shares similar flavor versatility as cardamom, which should come as no surprise; the two spices are practically cousins. All ginger plants are of the genus Zingiber, which belongs to the same family as cardamom plants, Zingiberaceae [1]. However, the supermarket ginger that most people are familiar with is the knobby, root-like rhizome of Z. officinale, better known as the garden ginger.

Fresh ginger gets its pungency and aroma from the flavor compound, gingerol. Studies have extolled gingerol for its many pharmacological abilities, including antipyretic (fever reducer), analgesic (pain reliever), anti-inflammatory, and antibacterial [2]. The best part? Chemically altering gingerol ends up tweaking ginger’s flavor profile, which helps give ginger its flavor versatility. No laboratories or fancy equipment are needed; as long as there’s a kitchen and a love for ginger-flavored foods, fine-tuning the flavor of ginger is rather straightforward.

Gingerol

Heating a ginger rhizome causes gingerol to undergo a reverse aldol reaction, transforming it to zingerone, a molecule that is completely absent in fresh ginger. Like gingerol, zingerone is responsible for the pungency of cooked ginger, but it also lends a sweeter note to the flavor. For this reason, cooked ginger makes a delightful treat as candied ginger. Zingerone also boasts quite a few pharmacological benefits, notably, its many anti-obesity actions [3]. For instance, zingerone was shown to inhibit obesity-induced inflammation, as well as stimulate the release of catecholamine, a hormone that aids in decreasing fat cells [3].

Zingerone

Drying a piece of ginger triggers a dehydration reaction, changing gingerol to shogaol. Shogaol is twice as spicy as gingerol, which is why dried ginger packs more heat than its fresh counterpart. Additionally, shogaol retains gingerol’s bioactivity, reported to act as an antioxidant, anti-neuroinflammatory, and even memory-enhancing agent [4].

Shogaol

With a multitude of benefits and just as many ways to serve it, there’s really no wrong way to enjoy ginger.

References cited

  1. Zingiber. The Plant List (2010). Version 1. Published on the Internet; (accessed 13 August, 2014).
  2. Young H.-Y, et al. Analgesic and anti-inflammatory activities of [6]-gingerol. Journal of Ethnopharmacology. Jan 2005; 96(2):207-210.
  3. Pulbutr P. et al. Lipolytic Effects of zingerone in adipocytes isolated from normal diet-fed rats and high fat diet-fed rats. International Journal of Pharmacology. Jul 2011; 7(5):29-34.
  4. Moon M, et al. 6-Shogaol, an active constituent of ginger, attenuates neuroinflammation and cognitive deficits in animal models of dementia. Biochemical and Biophysical Research Communications. June 2014; 449(1):8-13.

Alice PhungAbout the author: Alice Phung once had her sights set on an English degree, but eventually switched over to chemistry and hasn’t looked back since.

Read more by Alice Phung