Cinnamon

Cinnamon

Photo credit: Hans Braxmeier (Hans/Pixabay)

Sweet and spicy, cinnamon is one of the oldest spices known to humans; it is also a favorite topping or secret ingredient in both sweet and savory recipes. This warm spice is obtained from the dried inner bark of several species of trees within the Cinnamomum genus. True cinnamon however, sometimes known as Ceylon cinnamon, comes from C. verum (also, C. zeylanicum, the antiquated botanical name for the species), indigenous to Sri Lanka. Other Cinnamomum species that are cultivated for commercial purposes are C. burmannii (Indonesian cinnamon), C. loureiroi (Saigon cinnamon or Vietnamese cinnamon), and C. cassia (Cassia or Chinese cinnamon) [1].

Analysis of the fragrant essential oil from cinnamon bark reveals the main compound responsible for the sharp taste and scent of cinnamon comes from cinnamaldehyde (also known as cinnamic aldehyde). Since its identification in 1834 by French scientists, Jean-Baptiste Dumas and Eugene Péligot, cinnamaldehyde has been found to be a rather useful molecule outside of the spice rack. Studies have suggested that cinnamaldehyde has antioxidant properties, which makes it a promising anticancer agent [2]. Further, cinnamaldehyde has been shown to work effectively as pesticide, fungicide, and antimicrobial agent [3].

Of course, one of the most useful properties of cinnamaldehyde is making apple pies extra delicious.

Cinnamaldehyde-04

References cited

  1. Culinary Herbs and Spices. The Seasoning and Spice Association.
  2. Nagle A, Fei-Fei G, Jones G, Choon-Leng S, Wells G, Eng-Hui C. Induction of Tumor Cell Death through Targeting Tubulin and Evoking Dysregulation of Cell Cycle Regulatory Proteins by Multifunctional Cinnamaldehydes. Plos ONE. Nov 2012;7(11):1-13.
  3. Shan B, Cai YZ, Brooks JD, Corke H. Antibacterial Properties and Major Bioactive Components of Cinnamon Stick (Cinnamomum burmannii): Activity against Foodborne Pathogenic Bacteria. Journal of Agricultural Food Chemistry. 2007;55(14): 5484-90

Alice PhungAbout the author: Alice Phung once had her sights set on an English degree, but eventually switched over to chemistry and hasn’t looked back since.

Read more by Alice Phung


Desk Nachos & High-Tech Cocktails

DeskNachos

Dave Arnold will be joining us on June 1st for our final 2014 public lecture, Harnessing Creativity (and the Science of Pie). Get a taste of Dave Arnold’s creatively unconventional approach to cooking with these videos. Read more

Lena Kwak

A graduate of Rhode Island’s Johnson & Wales Culinary Institute, Cup4Cup President and Co-Founder Lena Kwak began her culinary career as a private chef and caterer. While serving as Research & Development Chef for The French Laundry, Kwak was tasked with testing edible innovations. She excelled quickly and was assigned to devise a gluten-free version of Chef Thomas Keller’s famed Salmon Cornet. The result, which garnered a tearful response from a dinner guest with gluten intolerance, was the genesis of “Cup4Cup.” Since Cup4Cup’s release in 2011, Lena has been honored as one of Forbes’ “30 Under 30” in 2011 and garnered a Zagat “30 Under 30” award in 2012.

See Lena Kwak June 1, 2014 at “Harnessing Creativity (and the Science of Pie)”

Lena-Kwak_C4C

What hooked you on cooking?
It was my mother, who is the quintessential Asian tiger mom. When it came to food, this is how she expressed her love for her family through her cooking. Around meals, I would see how her tough as nails exterior would melt as she watched her family eat the dishes she poured her love into. I would say that is how I learned what I loved about cooking even to this day—it is a way to express care and love and a way to strengthen human connections.
The coolest example of science in your food?
As a chef, I believe the coolest part about cooking is to recognize the series of chemical reactions that occur when you execute a certain recipe. When you begin to understand the technicality behind certain reactions, you are able to hone in on how to make improvements, or for that matter, also innovate a dish based on the science.
The food you find most fascinating?
Funny enough, it’s wheat flour as it’s something I’ve researched heavily over the years. I’ve grown an appreciation for how complex the ingredient is for being made up of a single composition. It provides structure, flavor, coloring, and a wide range of different textures. I’d say it’s the admiration for the ingredient that pushes me to continue the product development of gluten free products, as it would be truly a shame to not be able to experience those wonderful qualities for someone who couldn’t have gluten.
What scientific concept—food related or otherwisedo you find most fascinating?
That’s a tough question as I have always been fascinated with innovation in medical science, but as it related to my profession, I am also thoroughly interested in human science. For consumer product goods companies, such as Cup4Cup, there is a heavy consideration of human eating behaviors. The success of any product is not just based on a perception of a single individual, but the perception of millions of people. so, it is important to understand the average consumer perception within different target categories. What people choose to buy provides us with key insight into what influences human perception.
Your best example of a food that is better because of science?
Chocolate has come a long way from the first records of consumption by the Aztecs and Mayans. Over centuries, it has only been improved by the further understanding of the cacao bean itself. Through science, we’ve been able to figure out processes to improve texture, taste, and performance of chocolate. For example, the improvements that are made through tempering or conching.
How do you think science will impact your world of food in the next 5 years?
Finding solutions to keep up with the supply and demand as populations of the world increase every year and life span of individuals grows longer. It will be interesting and necessary to see what solutions there are to be able to sustain the growing public. To that same point, finding ways to improve the yield of food sources while being sustainable and not destructive to the environment.
One kitchen tool you could not live without?
A spoon.
Five things most likely to be found in your fridge?
Eggs, almond milk, at least one type of hearty greens, hummus, and chocolate covered pretzels (yes, cold).
Your all-time favorite ingredient?
Hands down my favorite ingredient is eggs.
Favorite cookbook?
For favorite cookbook (similar to picking your favorite child) I’d say as of this moment it’d have to be Jerusalem.
Your standard breakfast?
Eggs, sunny side up or a six minute boil, plus starch, vegetable, or grain, plus sautéed greens. (What can I say, I wake up hungry…)

5 Things About Apples

Our third and final lecture, Harnessing Creativity (and the Science of Pie), is coming up fast! At the event, students from the Science & Food undergraduate course will be serving up science and apple pies. To get ready, here are 5 fun facts related to apples:

Apples3


Apples5


Apples1


Apples2


Apples4


Liz Roth-JohnsonAbout the author: Liz Roth-Johnson is a Ph.D. candidate in Molecular Biology at UCLA. If she’s not in the lab, you can usually find her experimenting in the kitchen.

Read more by Liz Roth-Johnson


Nutrition Neuroscience & Flavor Perception

Frosting

Our next public lecture is coming up fast! To get ready for How We Taste, read up on how Dr. Dana Small is helping us scientifically understand our relationship with food. Read more

Taste Tripping With Miracle Berries

MiracleBerries

Miracle Berries (Wikimedia Commons)

Imagine eating a lemon and puckering to incredibly sour…no wait, incredibly sweet citrus syrup. Then you try some tart goat cheese, but to your surprise, it tastes like sugary frosting. An underripe pineapple? Better than candy. Salt and vinegar chips? Dessert!

This fantastical taste-changing sensation is the real-life effect of a West African fruit called Synsepalum dulcificum (Richardella Dulcifica), or the “miracle berry”, which physically alters taste receptors and causes sour foods to taste sweet.

How does this work?

The secret is a protein found in miracle berries called miraculin.

Miraculin

Miraculin Protein (Wikimedia Commons)

When a miracle berry is eaten, its molecules attach to the thousands of taste receptor cells located on taste buds lining the mouth, tongue, throat, and esophagus. Humans have at least five different kinds of taste receptors to detect five basic tastes: sweet, salty, sour, bitter, and umami. (Note that evidence in the last decade suggests that there may be additional taste receptors for lipids [1] – which may explain our natural affinity for fatty foods!) Miraculin, in particular, binds directly to the sweet-sensing taste receptor known as hT1R2-hT1R3.

The earliest scheme of miraculin-hT1R2-hT1R3 binding was based on a pH-dependent conformational change of the sweet receptor-protein complex. In this model, miraculin binds somewhere near the sweet receptor site (so there is no sweet taste at first), but at a lower pH (in sour or acidic environments), the receptor changes its shape so that miraculin can bind directly on the sweet receptor site and elicits a sweet taste [2]. That’s how miraculin causes a lemon, which creates a sour, acidic environment in your mouth, to taste so sweet!

MiraculinSour

More recent studies have found additional evidence that miraculin actually starts off directly attached to sweet receptor hT1R2-hT1R3 in neutral pH and activates it in the same place in an acidic environment. Experiments have shown that sweet receptors bound with miraculin are most responsive in acidic pH (4.8-6.5), but in general, the more sour environments lead to a greater intensity of sweet taste sensation [2]. In neutral pH (when miraculin is not activating the sweet receptors), miraculin actually has another effect: it blocks other sweeteners such as aspartame, sucrose, and saccharin, and other sweetness-inducing proteins like thaumatic and brazzein, from attaching to the hT1R2-hT1R3 receptor. Basically, miraculin claims the sweet receptor site for itself so that it can reactivate the site, allowing the magical sensations of sweetness to last for up to an hour.

MiraculinBlocksSweetReceptor

Even if miraculin can manipulate sweet taste receptors to make a lemon taste sweet, shouldn’t a lemon still taste sour? Little is currently known about whether or not miraculin actually inhibits sour taste receptors, but a neuroimaging study in 2006 has suggested that the electrical signals that transmit sour taste information diminish en route to the brain stem, and that only sweet taste signals even reach the brain for processing. In the study, participants were able to still detect both citric acid and sucrose after miraculin treatment, but the sweet taste dominated because 20% of the sourness may be suppressed at the receptor level, and most of it is suppressed in the central nervous system [3].

Miracle berries were historically used by West Africans to improve the taste of fermented bread and sour palm wine, but today’s applications may be life-changing. Miraculin is being studied as a therapy for chemotherapy patients suffering from dysgeusia, which is an unpleasant metallic taste distortion. In a 2012 pilot study, eight chemotherapy patients, who reported that most foods, including water, tasted metallic, bitter, or “spoiled”, were recruited to test the effects of miracle berries. After eating miracle berries for two weeks, patients showed substantial improvement in appetite, nutrition, and response to treatment because the miraculin either masked or eliminated the unpleasant tastes altogether [4]. In the meantime, expect to see an increased production of recombinant miraculin in transgenic fruits, booming commercial demand for miracle berries as low-calorie sweeteners, and some invites to trendy “taste tripping” miracle berry parties.

References

  1. Degrace-Passilly P, Besnard P (2012) CD36 and taste of fat. Curr Opin Clin Nutr Metab Care 15: 107–111.
  2. Koizumi A., et al. (2011) Human sweet taste receptor mediates acid-induced sweetness of miraculin. Proc. Natl. Acad. Sci. U.S.A. 108: 16819–16824.
  3. Yamamoto C, et al. (2006) Cortical representation of taste-modifying action of miracle fruit in humans. Neuroimage 33:1145-1151.
  4. Wilken M, Satiroff B (2012) Pilot study of “miracle fruit” to improve food palatability for patients receiving chemotherapy. Clinical Journal of Oncology Nursing 16:E173-E177.

Eunice LiuAbout the author: Eunice Liu is studying Neuroscience and Linguistics at UCLA. She attributes her love of food science to an obsession with watching bread rise in the oven.

Read more by Eunice Liu


Dana Small

Dr. Dana Small is a Professor in Psychiatry at Yale University, a Fellow at the John B. Pierce Laboratory, and visiting Professor at the University of Cologne. Her research focuses on understanding the mechanisms behind flavor preference formation, investigating the role of cognition in chemosensory perception, and determining how the modern food environment impacts brain circuitry.  She currently serves on the executive committee for the Association for Chemoreception Sciences and the Society for the Study of Ingestive Behavior.

See Dana Small May 14, 2014 at “How We Taste”

dana_small

What hooked you on science? On food?
I just loved biology class. It was love at first sight. I became a neuroscientist interested in flavor and food because I wanted to understand neural circuits that regulate appetitive behavior. Neuroimaging had just become available and I wanted to know if what we understood about the neurobiology of appetitive behavior in rodents applied to humans. The rodent work was based on studies where rats pressed a lever to have food pellets dispensed. I guess that means that rat chow got me hooked on food!
The coolest example of science in food?
Jelly beans because they are the perfect food to demonstrate that “taste” is mostly smell.
The food you find most fascinating?
Soufflé.
What scientific concept–food related or otherwise–do you find most fascinating?
Evolution. I am interested in understanding how the environment shapes biology—including the food environment.

Are there any analogies you like to use to explain difficult or counterintuitive food science concepts?

If I can speak of neuroscience of flavor, then I like to compare the oral capture illusion (which occurs when volatiles that are in the nose are referred to the mouth) with the visual capture that occurs when one watches TV. The sounds comes from the speakers but appears to come from the actors’ mouths.
How does your scientific knowledge or training impact the way you cook?
My scientific knowledge totally influences how I cook and eat. I avoid all artificial sweeteners and liquid calories (OK, except wine). I rarely eat processed food. I buy organic and try to eat locally. I eat a big breakfast and a light dinner. I avoid foods high in glycemic index (except on a special occasion) and search out high fat yogurt as a favorite lunch.
One kitchen tool you could not live without?
In truth I should be kept out of the kitchen!
Four things most likely to be found in your fridge?
Raspberries, blueberries, strawberries, blackberries.
Your all-time favorite ingredient?
Eggplant.
Your standard breakfast?
Steel cut oats, pomegranate seeds, blueberries, raspberries, and sliced almonds. Its my biggest meal of the day. Double latte.