Lard Legacy: Does Your Diet Doom Your Child’s Health?

Cheeseburger with Fries [photo credit: TheCulinaryGeek]

Cheeseburger with Fries [photo credit: TheCulinaryGeek]

Now you can feel even more guilt about how that greasy cheeseburger might affect your future. A study by the National Institutes of Health suggests eating a high fat diet may also impact your child’s health1.

Growing evidence links increased caloric and fat consumption to the rise in immune-mediated diseases, like arthritis, food allergies, and inflammatory bowel disease2. These diseases result from abnormal swelling and inflammation that occur when the immune system produces exaggerated responses or reacts to false signals. Studies suggest the high fat consumption typical of western diets may be responsible for confusing our immune systems. For example, dietary fats promote inflammation and trigger immune responses specific to bacteria3.

Because much of this evidence is based on short-term or population studies, for this study, Myles and collaborators explored the longer-term effects of increased parental fat consumption on their offspring’s immunity using mice1. Specifically, scientists fed a high fat “western” diet to one group and a low fat control diet to the other. After giving birth, their pups were fed the control diet and exposed to a battery of tests examining their immune response. Compared to the control diet, the western diet had 10% more calories from fat, twice as many carbohydrates, and a higher ratio (as much as 15:1) of omega 6 to omega 3 fats. While both omega fats are essential, healthy diets contain a close balance (2:1) of the animal-derived omega 6 fats relative to the fish- and vegetable-derived omega 3 fats.

While the mice pups showed no differences in weight or blood sugar, the pups whose parents had western diets surprisingly showed significantly lower immune function: these pups were less resilient to bacterial related disease. They had higher mortality rates from internal infections and more severe skin infections. Furthermore, their skin cells displayed a lower level of bacterial defense proteins. Additionally, their colons and spleens did not work as effectively. The colons of these animals, which are critical sites for developing the immune system, showed exaggerated inflammation when exposed bacterial toxins. Both their colons and spleens showed lower levels of immune cells and proteins.

B0008203 E.coli on the surface of intestinal cells

E.coli on the surface of intestinal cells [Photo Credit: Wellcome Images]

Interestingly, researchers suggest that the diet itself did not directly cause the compromised immunity of these mice. Instead, they conclude that the western diet negatively impacted their gut microbiome—the sum of all bacteria present in their gut. In follow-up experiments, pups fed the western diet showed normal immune function if their parents were fed the control diet. Furthermore, DNA characterization of mouse stool revealed that pups from parents on western diets had less diverse bacteria than control pups. Increased fat consumption may have changed available nutrients and limited the bacteria in the parents on western diets. Because mothers shape their offspring’s microbiomes during the birthing and nursing process, pups of parents on the western diet received less diverse bacteria. Therefore in follow-up experiments, the western diet did not affect the immunity of the pups whose mothers ate control diets, because they already had received diverse microbiomes.

Changes in the microbiome may impact the immunity of the pups because of the “hygiene hypothesis”; this essentially suggests we have become too clean. Because we are not exposed to enough bacteria and other immune system triggers growing up, our immune systems don’t develop as extensively as those exposed to a more diverse range of microorganisms. The ‘hygiene hypothesis’ has been fueled by research showing that children in homes with more bacteria have lower asthma and allergy rates. A similar scenario was recapitulated for the immune compromised pups in this study. Final experiments with the mice showed that when the researchers raised pups from both parental groups in the western and control diet together, they both displayed similar bacterial diversity and immune function. By living with the pups with more diverse bacteria, the immune compromised pups exhibited increased diversity in their microbiome and negated the effects of their parents’ western diet. In other words, this result may suggest that even if you lived on a diet of greasy cheeseburgers, your kid’s may still have healthy immune systems if they are rolling around in the dirt with the kids whose parents stuck to their kale and whole grains!

While this study is promising for the hygiene hypothesis, more research is necessary to understand this effect in people. For example, these mice had simpler microbiomes and diets than the average human. It is unclear how this complexity may change the effect for people. Additionally, while this study only looked at fat consumption, other factors such as genetics can impact microbiome diversity and the respective impact on immunity. In any case, assuming this research translates, it suggests eating a lean turkey burger now, may help save your kids from arthritis, food allergies, or inflammatory bowel disease in the future.

References cited:

  1. Myles, I.A. et al. 2013. Parental Dietary Fat Intake Alters Offspring Microbiome and Immunity. Journal of Immunology. 191 (6) 3200-3209.
  2. Kau, A.L. et al. 2011. Human nutrition, the gut microbiome and the immune system. Nature. 474: 327-336.
  3. Calder, P.C. 2011. Fatty Acids and Inflammation: The Cutting Edge Between Food and Pharma. European Journal of Phamacology. 668 (Suppl. 1): S50-S58
  4. Gereda, J.E. et al. 2000. Relation Between House-dust Endotoxin Exposure, Type 1 T-cell Development, and Allergen Sensitisation in Infants at High Risk of Asthma. Lancet 355: 1680-1683

Vince ReyesAbout the author: Vince Reyes earned his Ph.D. in Environmental Engineering at UCLA. Vince loves to explore the deliciousness of all things edible.

Read more by Vince Reyes

Fancy Chocolate Treats

Photo credit: Jesús Rodriguez (hezoos/Flickr)

Photo credit: Jesús Rodriguez (hezoos/Flickr)

Chocolate-covered strawberries have an innate beauty in their simplicity, making this snack both sweet and decadent. But this gourmet treat does not have to be expensive nor only savored at special events. Although it’s not quite as simple as dipping strawberries into soupy chocolate sauce, you can easily make chocolate-covered strawberries in your very own kitchen with a basket of strawberries, a bag of chocolate, and a little patience.

To perfect the crafting of chocolate-covered strawberries, it helps to first consider the composition of chocolate. Chocolate contains only a few ingredients: fat, sugars, proteins, and soy lecithin as emulsifier that holds everything together [1,2]. Cocoa butter, a fat that is derived from cocoa beans, makes up the majority of chocolate. Like many vegetable fats, cocoa butter is a mixture of fatty molecules called triacylglycerols. Different types of triacylglycerols—saturated, monounsaturated, polyunsaturated—have their own thermal and structural properties. Roughly 80% of cocoa butter are monounsaturated triacylglycerols [3]. The secret to chocolate perfection lies in the microscopic arrangement of these molecules. The texture (smooth vs. lumpy), appearance (glossy vs. dull), and melting temperature of chocolate (in your mouth at 98°F vs. in your hand at 82°F) all depend on how triacylglycerols pack together in the finished chocolate product.

Triacylglycerols are elongated, spindly molecules that can be packed together in different ways, sort of like long, skinny Legos. The three main ways that triacylglycerols can pack together are named α, β’, and β [3]. A pure mixture of triacylglycerols will form the most stable structure, β [4], and quality chocolate that is hard, smooth, and shiny will predominantly contain this β structure. Unfortunately, cocoa butter isn’t purely one type of triacylglycerol: while the 80% monounsaturated triacylglycerols will tend to pack together nicely into perfect β structures,  the other 20% of cocoa butter fat molecules can interfere and lead to less stable α or β′ structures. As shown in Table 1, chocolate can take on different combinations of α, β′, and β structures, categorized in order of increasing stability as crystals I-VI [2,3]. Crystal V possesses only the β structure, and so it boasts the most desirable chocolate characteristics, such as good sheen, satisfying snap, and melt-in-your-mouth smoothness.

Table 1. Properties of chocolate crystals (adapted from [2]).

Crystal Structure Melting Temp (°F) Chocolate Characteristics
I β′sub(α) 63 Dull, soft, crumbly, melts too easily
II α 70 Dull, soft, crumbly, melts too easily
III β′2 79 Dull, firm, poor snap, melts too easily
IV β′1 82 Dull, firm, poor snap, melts too easily
V β2 93 Glossy, firm, best snap, melts near body temp
VI β1 97 Hard, takes weeks to form

Unfortunately, getting chocolate to form the desired crystal type is easier said than done. When chocolate is melted and then left alone to re-harden on its own terms, uncontrolled crystallization occurs: any and all of the six crystal types will form at random. Chocolate that has been allowed to set this way ends up clumpy and chalky. To control crystallization and select for crystal V, the chocolate must be tempered. Through the tempering process, chocolate is first heated to 110-130°F to melt all the different crystal types. Most importantly, the temperature has to be higher than 82°F to melt the inferior crystals I-IV. Melted chocolate is then cooled down by adding “seeds” of chocolate that already contain only crystal V. These seeds are usually just pieces of chocolate that has already been tempered. Any piece of chocolate—chips, buttons, or chopped— can be used, as the majority of chocolate on the market has already been tempered. These seeds slowly cool the melted chocolate and act as a molecular template from which additional crystal V structures can grow [3]. As the chocolate cools, the stable crystal V will come together into a dense, even network, creating that lustrous, firm chocolate coating.

But beware: a drop of water can ruin all that hard work and perfectly tempered chocolate by causing it to seize. During the manufacturing process, water is removed from the chocolate, leaving behind a blend of fats and sugars. Introducing water to melted chocolate causes the sugar molecules to clump together in a process known as seizing [1]. These wet, sticky sugar clusters result in a grainy, thick batch of chocolate.

Seizing can happen when chocolate is melted in a double boiler, as water from the steam can get into the chocolate. It can also happen when pockets of chocolate are accidentally burnt. Burning is a chemical reaction that oxidizes the fats and sugars to produce carbon dioxide and water. Water that forms in the burnt pockets of chocolate will cause the rest of the batch to seize. But have no fear! Seized chocolate is not completely ruined: it can be saved by adding even more water or other liquids such as cream. Though it may seem counterintuitive, adding more water actually dissolves the sugar clumps, breaking them apart so that the chocolate can become smooth and creamy again [1]. Unfortunately, because there is now moisture in the chocolate, it will not dry and harden into a chocolate shell anymore. Chocolate rescued in this way can be used for hot chocolate, icings, fillings, or ganaches, which means you can still make an impressive chocolate treat even if the chocolate-covered strawberries don’t work out.

Chocolate-Covered Strawberries

1 lb. strawberries
16oz milk chocolate chips
Thermometer (optional, but would be helpful)

1. Melt half to two-thirds of the chocolate chips…

…In a double boiler: Stir constantly. Be sure steam doesn’t escape and sink into the chocolate. Do not cover.

…In the microwave: Heat on high 1 minute. Do not cover. Remove from the microwave and stir. If all the chocolate has not melted, heat again for 5-10 seconds. Repeat until completely melted
Note: If possible, avoid using a heat-retaining container like glass, which may burn the chocolate. Plastic is preferred.

2. Once completely melted, carefully continue heating until the temperature is 90-95°F.

3. Remove from heat, then add chocolate chips. Stir until the chips have melted and the chocolate is 82-88°F.

4. To test if the chocolate is ready, spread a thin layer on the back of a spoon or a piece of paper. It should harden in less than 3 minutes. If it doesn’t, stir in more chocolate chips.

5. When the chocolate is ready, carefully dip in strawberries. Make sure the strawberries are dry, before dipping. Allow dipped strawberries to dry on a sheet of parchment paper.

References Cited

  1. Corriher, S. Chocolate, Chocolate, Chocolate. American Chemical Society: The Elements of Chocolate. October 2007; <>
  2. Loisel C, Keller G, Lecq G, Bourgaux C, Ollivon M. Phase Transitions and Polymorphism of Cocoa Butter. Journal of the American Oil Chemists’ Society. 1998;  75(4): 425-439.
  3. Rowat A, Hollar K, Stone H, Rosenberg D. The Science of Chocolate: Interactive Activities on Phase Transitions, Emulsification, and Nucleation.  Journal of Chemical Education. January 2011; 88(1): 29-33.
  4. Weiss J, Decker E, McClements J, Kristbergsson K, Helgason T, Awad T. Solid Lipid Nanoparticles as Delivery Systems for Bioactive Food Components. Food Biophysics. June 2008; 3(2): 146-154

Alice PhungAbout the author: Alice Phung once had her sights set on an English degree, but eventually switched over to chemistry and hasn’t looked back since.

A Matter of Taste: Full-Fat Versus Reduced-Fat Cheese

Photo credit: Wikimedia Commons

Photo credit: Wikimedia Commons

Given the popularity of cheese and the seeming ubiquitous goal towards eating less fat, it is no surprise that reduced- and low-fat cheeses have great market potential. Though as many cheese companies have discovered, reducing the amount of fat for the sake of fewer calories sacrifices that rich, bold, creamy flavor of cheese. Fat is a major contributor to taste and mouthfeel of foods, and many cheeses are considered high-fat foods. But how exactly does fat content influence cheese taste and texture?

In cheesemaking, the process of converting milk to cheese alters the structure and composition of milk, essentially reducing it to a concentrated form of milk fat and casein, a major milk protein. Casein forms a protein matrix that traps fat and water, giving cheese that soft, moist texture we expect [1]. Full-fat cheeses typically have a casein-to-fat ratio of less than one, meaning there is a higher concentration of fat compared to casein in the cheese. Because fat is a nonpolar biomolecule, the greater fat content, locked within the casein network, gives rise to a predominantly nonpolar cheese matrix.

By definition, reduced-fat cheeses have at least 25% less fat than their full-fat counterparts and low-fat cheeses have 3g of fat or less per serving (21 Code of Federal Regulations [101.62b]), which is roughly around an 80% reduction or greater, depending on the type of cheese. To accomplish this, lower fat milks, such as skim milk, are used to produce the lower fat variants, which have a casein-to-fat ratio greater than one [1,2]. With less fat, the casein networks form a tighter matrix that gives rise to firmer cheese [1]. To replace the fats removed from the cheese matrix and to soften the texture, water is typically added back into the cheeses [2]. Water is a polar molecule, so by increasing the moisture this way, the cheese matrices of reduced- and low-fat cheeses are more polar, unlike the nonpolar matrices of the full-fat cheeses.

Comparing the casein-to-fat ratios of different cheeses gives insight into more than simply cheese composition—the ratios signify how we taste the cheese. When a piece of cheese is ingested, it increases in temperature in our mouth and dissolves with saliva, transforming from a semisolid to a liquid. In addition to textural changes, aromatic flavor compounds are also released during this phase change [3]. The rate at which these compounds are released is determined by their partition coefficient, which is the concentration of the aromatic compound in its gas form compared to its concentration in its liquid form [3]. Whether the flavor compound is in a polar versus a nonpolar matrix can influence the partition coefficient, altering the timing of their release and ultimately, our sensory perception of the flavor [3]. Many flavor compounds found in cheeses happen to be fat-soluble, meaning they can mix with other nonpolar substances without separating into two layers. Considering that lower fat cheeses have prevalently polar matrices, the way the flavor compounds interact with the cheese matrices differs significantly enough to change flavor-release patterns. This is what causes some reduced- and low-fat cheeses to taste “off” compared to full-fat cheeses.

Fat reduction also modifies the cheese biochemistry. Through analysis of full-fat cheese versus 75% reduced-fat cheese, it was found that different sets of flavor compounds are critical for the cheesy flavor of the two types of cheese [3]. When certain flavor compounds characteristic of full-fat aged cheddar were added to reduced-fat young cheddar, tasters scored the two cheeses similarly [3]. So take heart, cheese-lovers. Reduced-fat cheeses certainly do have the potential to be healthy and delicious.

References Cited

  1. Banks, J. M. (2004). The Technology of Low-Fat Cheese Manufacture. International Journal of Dairy Technology, 57(4), 199-207. doi:10.1111/j.1471-0307.2004.00136.x
  2. Impact of Fat Reduction on Flavor and Flavor Chemistry of Cheddar Cheeses. (2010). Journal of Dairy Science, 93(11), 5069-5081. doi:10.3168/jds.2010-3346
  3. Kim, M. K., Drake, S. L., & Drake, M. A. (2011). Evaluation of Key Flavor Compounds in Reduced- and Full-Fat Cheddar Cheeses Using Sensory Studies on Model Systems. Journal of Sensory Studies, 26(4), 278-290. doi:10.1111/j.1745-459X.2011.00343.x

Alice PhungAbout the author: Alice Phung once had her sights set on an English degree, but eventually switched over to chemistry and hasn’t looked back since.

Read more by Alice Phung

Soda Consumption & Fat Perception


Researchers at University of Alaska analyze carbon isotopes to measure soda consumption, while German scientists study how our psychological state affects how we taste and perceive fat.

Read more

Counting Calories & “Healthy” Chocolate


If you’ve ever wondered what 200 Calories look like on a plate, wiseGEEK has just the photo gallery for you! Meanwhile, scientists create a healthier chocolate by replacing fat with fruit juice. Read more

Homemade Butter


Despite the misconception among certain pop culture icons that butter is a carb, butter, like other fats and oils, is a lipid. Broadly defined, lipids are any molecules that have hydrophobic, or water repelling, characteristics.  In contrast to simple molecules like water (H20) or sugar (C6H12O6), butter does not have one molecular formula; rather, it is a mixture of triglycerides. Here is what a triglyceride looks like [1]:


Triglycerides are molecules made of three fatty acids bound to glycerol, a sugar alcohol. Fatty acids are long hydrophobic chains of hydrogen and carbons that repel water. Triglycerides do not have to be the same three fatty acids, but can be mixed and matched. For example in butter, oleic acid (32%), myristic acid (20%), palmitic acid (15%) and searic acid (15%) make up the greatest percentage of the fatty acids [2].


In addition to all these lipids, surprisingly, butter contains water. While oil and water don’t normally mix, in butter, tiny microscopic water droplets are dispersed within the fat.  This is commonly known as a water-in-oil emulsion. An emulsion is any mixture of two liquids that don’t usually mix. The opposite of a water-in-oil emulsion would be an oil-in-water emulsion in which oil droplets are entrapped within water.

To understand the secret of how butter can be made of two immiscible liquids, we need to delve back into the molecular structure.  Butter is made from the cream, which has a higher fat content (15-25%) than milk (5 – 10%) [3].  In milk and cream, which are oil-in-water emulsions, the fatty triglycerides stay suspended in liquid because they are encapsulated in tiny fatty spheres or globules. Each globule is surrounded by a nanoscopically thin layer of phospolipids and stabilizing proteins. Phospholipds have hydrophobic lipid tails that love to repel water; they also have hydrophilic, or water loving, heads that contain a phosphate group (thus the name, phospho-lipid). Here is a picture of a phospholipid [1]:


The phospholipids organize themselves in a thin layer so that the water repelling hydrophobic portions are aligned with the fatty acid chains while the water loving hydrophilic heads interact with the milk liquid.  This allows the fats to remain dissolved in the milk and float around like little water balloons.

Milk Fat globule. (A) Diagram of the phosopholipid layer surrounding a fat globule [3]. (B) Cryo-electron microscopy image of a fat globule [4]. The scale bars are 0.1 μm.

Now, that we have talked about the structure of butter, how to get from cream to butter?  (Remember: milk and cream are oil-in-water emulsions and butter is a water-in-oil emulsion.) The oil-in-water emulsion of the cream is reversed into a water-in-oil emulsion in butter. During the churning or mixing process of butter making, the fatty globules in the cream break open to release the entrapped fat molecules. The hydrophobic fat molecules clump together and mix to form larger fat globules that coalesce into larger solid fat droplets. This processes pushes out the liquid portion and the solid portion becomes the butter.  Since these types of fat molecules typically melt at temperatures of 30 to 41°C (86 to 106°F), this means that at cool temperatures below approximately 39°F (4°C), the remaining liquid gets trapped within the solid fat matrix and is unable to separate out of the butter [5].


Below is a recipe for making your own homemade butter. You don’t need fancy equipment or churners like your ancestors used; a well-sealed glass jar works wonders.  The shear forces generated by rigorous shaking are sufficient to convert your cream into butter.


Heavy whipping cream (6 cups makes about 1lb of butter)
Salt, to taste
Jar with lid, any size


1. Fill the jar about ¾ of the way to the top with the heavy whipping cream and close the lid.

2. Shake the jar for about 4-5 minutes until the cream begins to thicken. Shake longer if you wish for a thicker consistency.

The shaking motion breaks down the fat globules. The membranes surrounding each fat globule break, releasing the hydrophobic triglycerides. The triglycerides clump together and push away the hydrophilic liquid, the buttermilk.

3. Drain off the buttermilk and place butter in a small bowl. Knead the butter under cold running water to remove any remaining buttermilk.

4. Salt to taste. Form butter into a ball or log. Serve immediately or refrigerate.

Recipe Adapted From:

Online Resources

  1. General Chemistry Online: What is the chemical structure of butter?
  2. “Overview of the Buttermaking Process” from University of Guelph

References Cited

  1. K562. Overweight & obesity.
  2. Fatty acids in butter. Percentage composition from Practical Physiological Chemistry, P. B. Hawk, O. Bergeim, Blakiston:Philadelphia, 1943.
  3. Gallier, S. et al. 2012. Structural changes of bovine milk fat globules during in vitro digestion. J Dairy Sci. 95(7): 3579- 3592.
  4. Robenek, H. et al 2006. Butyrophilin controls milk fat globule secretion. PNAS. 103 (27): 10385-10390.
  5. Butter: Some Technology and Chemistry.

Vince ReyesAbout the author: Vince C Reyes earned his Ph.D. in Civil Engineering at UCLA. Vince loves to explore the deliciousness of all things edible.

Read more by Vince Reyes